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Abstract

The H.264/ACV standard provides significant improvements in performance over
earlier video coding standards at the cost of increased complexity. Our challenge is to
determine H.264 parameter settings that have low complexity but still offer high video
quality. In this paper, we propose two fast algorithms for finding the H.264 parameter
settings that take about 1% and 8%, respectively, of the number of tests required
by an exhaustive search. Both the fast algorithms result in a maximum decrease in
peak-signal-to-noise ratio of less than 0.71 dB for different data sets and bitrates.

1 Introduction

H.264/MPEG-4 AVC is an international video coding standard that was jointly developed
by the ITU-T and the ISO/IEC [1]. Like previous video coding standards, H.264 uses block-
based motion compensation prediction. Its large number of parameter choices includes the
number of reference frames, variable block size in both motion compensation and residual
transform coding, the resolution of motion vectors, and the step sizes for residual quantiza-
tion. H.264 yields a bitrate savings of about 50% over MPEG-2 for the same video quality
[2]. Choosing the right set of encoder parameters results in efficiently coded video while
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an inappropriate selection of parameters wastes bits, sacrifices quality, and takes longer to
encode. Joint rate-distortion-complexity (R-D-C) analysis of H.264 is complex due to the
large number of possible combinations of encoding parameters.

Formalized complexity-distortion analysis (or complexity-rate-distortion analysis) has
been proposed for still image coding [3, 4]. In these works, the traditional R-D optimization
is augmented with complexity constraints and formulated using the common Lagrange opti-
mization technique. The particular image coding techniques selected (tree-structured vector
quantization (TSVQ) in [3] and quadtree-based DCT coding in [4]) are relatively easily cast
in this formulation. To provide reasonable complexity, the TSVQ optimization resorts to a
greedy algorithm and simpler distortion measures, while the DCT algorithm optimizes for
variable complexity in the decoder.

Motion-compensated transform-coded video compression algorithms cannot in general
be cast in such a nicely unified approach for either R-D or R-D-C optimizations. The large
number of parameter selections for each frame, the many conditional decisions made in
encoding, and the dependent coding of multiple frames make exhaustive search techniques
infeasible, and even intelligently derived R-D optimization algorithms have a complexity on
the order of 1012 to 1014 [5, 6].

While several attempts have been made to include complexity considerations in video
coding, these techniques have been largely ad hoc and heuristic, and no actual optimization
is performed [7, 8, 9]. Rather, a subset of coding parameter choices is selected (e.g., using a
reduced number of search locations for motion estimation) and algorithmic simplifications are
enforced (e.g., simple thresholding for mode decisions), and then the effect of each parameter
choice and simplification on both performance and complexity reduction is quantified. An
initial attempt at optimization is made in [10], where the coding choices are limited, but
then a local search on these is performed to minimize complexity while meeting a distortion
constraint. A substantial assumption in this approach is that distortion is convex in the
coding parameters; additionally, rate is not considered.

There has been prior work done in power-rate-distortion optimization for a complex-
ity scalable video coder, where complexity is addressed in terms of a power constraint [11].
R-D-C optimization of integer motion estimation in H.264 has been discussed in [12]. In mul-
timedia transmission, R-D-C adaptation of the bitstream to receiver constraints and network
conditions has been discussed in [13]. Complexity-distortion analysis of H.264 decoder has
been done in [14], where they found the use of I-frames or I and P-frames to outperform
B-frame structures when using the same bitrate constraints.

In this paper, we introduce a distortion-complexity optimization approach for the H.264
encoder. We assume that the operating bitrate is known. We consider encoding time and
mean squared error (MSE) as our measure for complexity and distortion. Specifically, we
obtain the MSE of luma (Y) component for each frame and use its average over the video
as a measure for distortion.

Typically, to find the best encoder parameters, a large number of tests will have to be
conducted. Each test results in a distortion-complexity point as shown in Fig 1. The best
encoder parameters correspond to the points on the D-C convex hull of Fig 1. Even with
fixed rate and current available fast computers, the process of finding the D-C convex hull
is very time consuming.

In this paper, we propose two fast approaches that use the generalized Breiman, Fried-
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Figure 1: Distortion (MSE) vs. complexity (average encoding time).

man, Olshen, and Stone (GBFOS) algorithm [15] for obtaining parameter settings that result
in D-C points that are close to optimal. The algorithms are tested using x264, an open source
H.264 encoder [16]. The x264 encoder has been compared with different commercial H.264
encoders in a recent study [17], and it was found to provide the best quality.

This paper is organized as follows. In Section 2, we describe two algorithms for D-C
optimization of the H.264 encoder. In Section 3, we describe the test procedure and Section
4 includes a performance comparison of our algorithms to the convex hull points. We also
show that both the algorithms perform well for different bitrates and a wide variety of video
content, and is robust to changes in the training data set. We conclude in Section 5.

2 GBFOS for Distortion-Complexity Optimization

The GBFOS algorithm is an algorithm for optimally pruning tree-structure classifiers and
coders [15],[18]. It has also been used for optimal bit allocation for classified vector quantizer
with multiple classes [19]. A tree functional is a real-valued function of trees, such as average
distortion or rate [18]. The GBFOS algorithm requires the tree functionals to be monotonic
and linear or affine. While distortion and complexity of the H.264 encoder parameters are
not additive, here we make an assumption that they are, which will result in points that are
not necessarily optimal. This assumption is made when we vary one of the encoder param-
eters while setting other parameters to its lowest MSE option, and attribute the resulting
distortion-complexity to the variable parameter alone. However, the distortion-complexity
depends upon all encoder parameters. In this section, we describe two approaches that use
the GBFOS algorithm for obtaining encoder parameter settings. The first approach requires
only one iteration of encodings, and we call this the GBFOS-basic algorithm. The second al-
gorithm requires more than one iteration of encodings, and we call this the GBFOS-iterative
algorithm.

In our optimization problem, let {1, . . . , M} be a set of M encoder parameters, with



each parameter i having ni options {1, . . . , ni} arranged in order of decreasing MSE. We
denote a parameter setting as a vector m = (m1, . . . , mM). For each parameter i, we vary
mi,j = (n1, . . . , ni−1, j, ni+1, . . . , nM), for 1 ≤ j ≤ ni, and obtain its corresponding distortion
di(mi,j) and complexity ci(mi,j). From the li points on the convex hull of the distortion-
complexity plot, we obtain parameter settings and corresponding slopes. (The number of
convex hull points li may be less than the total number of parameter options ni.) We reindex
the points on the convex hull from 1 to li. Therefore, the parameter setting of a convex hull
point is given by qi,j = (n1, . . . , ni−1, j, ni+1, . . . , nM), where 1 ≤ j ≤ li and li ≤ ni. The
vector qi,j and corresponding slopes are used in the initialization step of both the GBFOS-
basic and GBFOS-iterative algorithms. The resulting encoder parameter settings selected
by each algorithm is given by vectors p.

We define the slope between points on the D-C convex hull as

Si(qi,j, j) = −di(qi,j) − di(qi,j−1)

ci(qi,j) − ci(qi,j−1)
. (1)

2.1 GBFOS-Basic Algorithm

In the GBFOS-basic algorithm, we successively compare slopes from D-C plots of different
parameters to prune the parameter with the least slope. A new encoder parameter setting
is obtained at the end of each slope comparison. The GBFOS-basic algorithm is given in
Fig 2. We first initialize the vector p to the minimum distortion and maximum encoding
complexity parameter setting as given in step (1). At the end of each iteration in step (2),
we obtain a new parameter setting p.

1. Initialize p = (l1, . . . , li, . . . , lM) and for each parameter i, set qi =
(n1, . . . , ni−1, li, ni+1, . . . , nM).

2. Repeat until p = (1, . . . , 1):

(a) Choose parameter i∗ that results in the lowest slope Si∗(qi∗ , li∗).

(b) Set li∗ = li∗ − 1. Set qi∗ = (n1, . . . , ni∗−1, li∗ , ni∗+1, . . . , nM).

(c) Determine new p = (l1, . . . , li∗−1, li∗ , li∗+1, . . . , lM).

Figure 2: The GBFOS-Basic algorithm.

2.2 GBFOS-Iterative Algorithm

In the GBFOS-iterative algorithm, we compare the D-C slopes of different parameters in each
iteration. Based upon the lowest slope parameter obtained in each iteration, we determine
the parameters for which encodings have to be performed in the next iteration. At the end of
each iteration, a new parameter setting is obtained. The GBFOS-iterative algorithm is given
in Fig 3. It uses the same initialization step as the GBFOS-basic algorithm. In step 2c(ii),
the number of points on the convex hull l′i may be less than li. Therefore, the parameters
are reindexed from 1 to l′i.



1. Initialize p = (l1, . . . , li, . . . , lM) and for each parameter i, set qi =
(n1, . . . , ni−1, li, ni+1, . . . , nM).

2. Repeat until p = (1, . . . , 1) in step 2(b):

(a) Find i∗ that results in the lowest slope Si∗(qi∗ , li∗) using Equation (1).

(b) Set li∗ = li∗ − 1. Set p = (l1, . . . , li∗−1, li∗ , li∗+1, . . . , lM).

(c) For each i �= i∗:

i. Obtain di(mij) and ci(mij) for mij = (l1, . . . , li−1, j, li+1, . . . , lM),
where 1 ≤ j ≤ li. Obtain the D-C plot and its convex hull points.

ii. Reindex the parameters of the convex hull points from 1 to l′i,
where l′i ≤ li.

iii. Set qi = (l1, . . . , li−1, l
′
i, li+1, . . . , lM). Set li = l′i.

Figure 3: The GBFOS-Iterative algorithm.

3 Experiments

In our tests, we use video sequences from three data sets. One of the data sets contains
15 QCIF video sequences [20] (Standard). The other two data sets are of American Sign
Language videos created at the University of Washington, with one set (ASL-1) containing
10 video clips at QCIF resolution and the other set (ASL-2) containing 10 video clips at
320x240 resolution. These video clips are encoded using x264 (March 26, 2006 version) [16]
at 30 frames per second (fps). We choose three target bitrates: 30 kb/s, 150 kb/s and 300
kb/s. Tests are conducted on a Linux machine with a 2.8 GHz Intel CPU.

The following x264 encoding parameters are considered in our D-C optimization: number
of reference frames (ref); sub-pixel motion estimation method (subme); partition size for
intra and inter motion compensation (part); quantization approach (trellis); DCT size
(dct); motion estimation method (me); motion search method (ms); and the use of mixed
reference (mixed-refs) [16]. We found that the parameters dct, me, ms and mixed-refs

can be set to their best settings, namely DCT 4x4 or 8x8, quarter pel, uneven multihexagon
and enabling the use of mixed reference, respectively, for little additional complexity. The
D-C optimization is therefore just done for the encoding parameters ref, subme, part and
trellis. The parameter ref has 16 options (1, . . . , 16), subme has 7 options (1, . . . , 7),
part has 10 options and trellis has three options (0, 1, 2). The options of all the above
parameters are arranged in decreasing order of MSE.

We first determine the slopes of each encoder parameter from its D-C plot using the
procedure given in Section 2. For example, to obtain the D-C plot for the number of ref-
erence frames (ref) we set subme = 7, part = (P8x8,P4x4,B8x8,I8x8,I4x4) and trellis

= 2. Figure 4 gives the D-C plots for ref, subme, part and trellis corresponding to the
ASL-1 data set at a bitrate of 30 kb/s. Clearly, these D-C curves are not convex. The
parameter settings and slopes corresponding to the convex hull points are chosen as input
to both the GBFOS-basic and GBFOS-iterative algorithms. The GBFOS-iterative uses this
data in the second iteration. For example in Figure 4, we find the change in part from
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Figure 4: Distortion-complexity plots obtained by varying (a) number of reference frames,
(b) partition sizes (the options are listed in the legend), (c) subme values and (d) trellis
options. The convex hull points of each plot is shown connected by a dashed line.

(P8x8,P4x4,B8x8,I8x8,I4x4) to (P4x4,P8x8,I8x8,I4x4) results in the lowest slope. In the
second iteration, we obtain separate D-C plot for parameters ref, subme and trellis by
setting part = (P4x4,P8x8,I8x8,I4x4) and other parameters to settings in the previous iter-
ation. Specifically, to generate the D-C plot for ref in the second iteration, we set subme =
7 and trellis = 2 and part = (P4x4,P8x8,I8x8,I4x4). The above procedure is repeated in
each successive iteration.



4 Results

In this section, we compare the performance of the GBFOS-basic and GBFOS-iterative
algorithms to the exhaustive search approach. We also test our algorithms for robustness
to change in data content. Let n1, ..., nM be the number of options of each M parameters.
Then the number of encodings required per video sequence for obtaining the convex hull
points exhaustively is

Nconvex =
M∏

i=1

ni, (2)

while for the GBFOS-basic algorithm, it is

NGBFOS = 1 − M +
M∑

i=1

ni. (3)

The difference in the number of tests required can be quite large, even when using few
parameters. For example, using four parameters (part, trellis, ref and subme), we obtain
Nconvex = 3360 and NGBFOS = 33. Therefore, in this example, GBFOS-basic takes about
1% of the total number of tests required for obtaining the convex hull points. Clearly, the
total number of tests for obtaining the convex hull points will increase with the number of
encoder parameters.

We test the proposed algorithms using three data sets and three target bitrates. Each
GBFOS algorithm parameter set corresponds to a D-C point and we compare it with the
closest convex hull point obtained by testing each of the 3360 possible encoder parameter
options. We use peak-signal-to-noise ratio (PSNR) of the luma component as our measure
for distortion, defined as

PSNR = 10 log10

2552

MSE
, (4)

where MSE is the average mean squared error of the luma component per frame. Figure 5
shows the PSNR vs. average encoding time for the GBFOS-basic, GBFOS-iterative algo-
rithm and convex hull points, respectively, for the ASL-1 data set at 30 kb/s. As expected,
both the GBFOS-basic and GBFOS-iterative algorithm have points that do not fall on the
convex hull, due to the sub-optimality of the independence assumption. As expected, we
find that the GBFOS-iterative points are closer to the convex hull than the GBFOS-basic
points, but both algorithms perform very well.

We compute the PSNR difference between each GBFOS point and the closest convex
hull point that has greater or equal PSNR value. The maximum PSNR difference over
all points is used to evaluate the performance of each of our algorithms. In Figure 5, the
maximum PSNR difference for both our algorithms corresponds to the point that has the
lowest PSNR (fastest encoding speed). We have found that as the PSNR decreases, both
the GBFOS algorithms chooses parameter options such that they either remain unchanged
or a lower complexity option is chosen. For example, in Figure 5, the parameter settings
for the second highest PSNR point are the same as the highest PSNR point, except for the
partition size that has a lower complexity option. However, this is not necessarily true for
the convex hull points. Tables 1 and 2 give the number of encodings per video sequence
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Figure 5: PSNR vs. average encoding time per frame for the convex hull points, GBFOS-
iterative and GBFOS-basic algorithm for ASL-1 data set at 30 kb/s.

Table 1: Results for the GBFOS-basic algorithm: maximum PSNR difference from the
convex hull and number of encodings.

Bitrates ASL-1 data set ASL-2 data set Standard data set
Max PSNR Number of Max PSNR Number of Max PSNR Number of
diff (dB) encodings diff (dB) encodings diff (dB) encodings

30 kb/s 0.575 33 0.214 33 0.184 33
150 kb/s 0.707 33 0.493 33 0.435 33
300 kb/s 0.535 33 0.152 33 0.438 33

Table 2: Results for the GBFOS-iterative algorithm: maximum PSNR difference from the
convex hull and number of encodings.

Bitrates ASL-1 data set ASL-2 data set Standard data set
Max PSNR Number of Max PSNR Number of Max PSNR Number of
diff (dB) encodings diff (dB) encodings diff (dB) encodings

30 kb/s 0.575 189 0.283 102 0.184 121
150 kb/s 0.141 161 0.385 81 0.113 250
300 kb/s 0.087 268 0.231 180 0.398 188

and the maximum PSNR difference for both our algorithms for different bitrates and data
sets. We find that the maximum PSNR difference over different data set and bitrates for
GBFOS-basic and GBFOS-iterative is 0.707 dB and 0.575 dB, respectively. GBFOS-basic
takes only 33 encodings while GBFOS-iterative takes a maximum of 268 encodings.

To test for the robustness of our algorithms for change in data content, the encoder
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Figure 6: PSNR vs. average encoding time for ASL-1 test data as applied to parameter
settings found with the GBFOS-basic and GBFOS-iterative algorithms on the ASL-2 training
data set at 150 kb/s.

Table 3: Maximum PSNR difference from the convex hull for the GBFOS-basic and GBFOS-
iterative algorithm for different (test set, training set) pairs and bitrates.

Bitrates Maximum PSNR difference(dB)
(ASL-1, ASL-2) (ASL-1, Standard) (Standard, ASL-1)
Basic Iterative Basic Iterative Basic Iterative

30 kb/s 0.17 0.265 0.422 0.422 0.243 0.18
150 kb/s 0.3 0.217 0.538 0.211 0.549 0.145
300 kb/s 0.223 0.051 0.314 0.288 0.213 0.167

parameters obtained from one data set (training set) are applied to a different data set (test
set). We use three (test set, training set) pairs, namely (ASL-1, ASL-2), (ASL-1, Standard)
and (Standard, ASL-1) for three different bitrates: 30 kb/s, 150 kb/s and 300 kb/s. In each
case, we obtain the maximum PSNR difference of our algorithms to the convex hull points
obtained from the training data and applied to the test data. Figure 6 gives the PSNR vs.
encoding time for (ASL-1, ASL-2) data set pair at 150 kb/s. The maximum PSNR difference
for both our algorithms for different (test set, training set) pairs at different bitrates is listed
in Table 3, and we find they are within 0.55 dB.

5 Conclusion

In this paper, we proposed the GBFOS-basic and the GBFOS-iterative algorithms for ob-
taining H.264 encoder parameter settings that result in excellent distortion-complexity per-
formance. The GBFOS-basic and GBFOS-iterative algorithms take only about 1% and 8%,



respectively, of the total number of tests required to find the optimal parameter settings
using an exhaustive search. Both the algorithms perform within a maximum PSNR differ-
ence of 0.71 dB when using the same training and test data set, and they are robust to
changes in both test and training data sets. Finally, as expected, the GBFOS-iterative al-
gorithm performs better than the GBFOS-basic algorithm, at a cost of an increased number
of encodings.
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