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ABSTRACT

Objective estimators for video are expected to estimate accurately
subjective ratings provided by humans. This work presents a subjec-
tive experiment designed to acquire intelligibility ratings for a col-
lection of compressed ASL videos. The distortions present in the
experimental database are analyzed in terms of their impact on the
performance of objective estimators. Distortions that do not signif-
icantly vary across space or time cannot adequately challenge tradi-
tional objective estimators, such as PSNR and RMS distortion con-
trast, and an objective intelligibility measure designed specifically
for ASL video provides negligible improvements in prediction ac-
curacy. Distortions that vary across space and time, affecting only
localized regions in the video, are considered spatially and tem-
porally diverse. When the distortions present in the experimental
database are sufficiently diverse, the objective intelligibility measure
estimates subjective ratings more accurately than PSNR and RMS
distortion contrast.

Index Terms— Region-of-interest coding, sign language video,
video quality assessment, video quality database

1. INTRODUCTION

Real-time, two-way transmission of American Sign Language (ASL)
video over cellular networks provides natural communication among
members of the Deaf community. Region-of-interest (ROI) tech-
niques suit ASL video, because the signer is the ROI. Subjective
experiments provide an accurate evaluation of the quality of service
being delivered by a such a video compression and transmission sys-
tem. Because of the high cost of subjective studies, objective as-
sessment techniques are developed to estimate the subjective ratings
provided by humans and are evaluated in terms of their accuracy on
a specific test database.

The experimental test database analyzed in this work is com-
prised of compressed ASL video, encoded at very low bitrates using
region-of-interest encoders designed for ASL content. The subjec-
tive experiment that produces the test database is presented in Sec-
tion 2. Four objective estimators are studied in terms of their ability
to estimate subjective intelligibility scores. However, any conclu-
sions regarding the performance of an objective estimator must be
conditioned on the content available in the test database. In order to
confidently compare objective estimators, the distortions contained
in the experimental data must be evaluated in terms of their abil-
ity to adequately challenge the objective estimators. Section 3 an-
alyzes the video content and distortions present in the experimental
database and studies their impact on the performance of the objective
estimators. Concluding remarks are provided in Section 4.

2. SUBJECTIVE EXPERIMENTAL DATABASE

A subjective experiment was designed to evaluate 4 encoding algo-
rithms at bitrates ranging from 30 kbps to 80 kbps. Sixteen sign
language stories told by a fluent signer at her natural signing pace
were filmed in two different locations, an indoor studio with a static
background and an outdoor location on a busy street having a signif-
icant amount of background activity.

A total of 16 fluent ASL users participated in the experiment,
consisting of 7 male and 9 female participants, having an average of
28.4 years of experience with ASL. Participants provided their pre-
ferred language for communication: 8 reported English, 5 reported
ASL, and 3 reported both English and ASL. The subjective experi-
ment followed a single stimulus testing procedure. Following each
test video, participants were asked three questions designed to eval-
uate their comprehension of the story, the intelligibility of the test
video, and usability of the test video. Because of the nature of this
intelligibility assessment task, no single story is viewed by the same
participant twice, eliminating any possible learning effects.

The test set of videos evaluated in this study were generated us-
ing 4 different encoding algorithms each operating under both a high
bitrate and low bitrate setting. Two different sets of rates were se-
lected such that at each location, the most intelligible videos would
be very easy to understand and the least intelligible video would be
very difficult to understand. Outdoor videos were encoded at rates
of 50 kbps and 80 kbps; indoor videos were encoded at rates of 30
kbps and 45 kbps. Each of the 4 encoding algorithms evaluated in
this study operate within the H.264/AVC standard and provide rate
control that meets an average target bitrate. Three sign language spe-
cific encoders and a general purpose video encoder were evaluated.

x264 EncoderAn open-source H.264/AVC encoder, x264 [1],
was selected because it offers rate-distortion performance similar
to the JM reference encoder at speeds 50 times faster. The rate-
distortion optimization in x264 effectively treats all macroblocks
equally, minimizing the average MSE over the entire frame, sub-
ject to the rate constraint. Rate control is performed by adjusting the
quantization parameter on a frame-by-frame basis [2].

Foveated EncoderIn foveated video coding, the video frame is
encoded with non-uniform, decreasing quality away from the the ob-
server’s point of fixation, attempting to match the visual acuity of the
human visual system [3]. Because an ASL observer primarily gazes
at the signer’s face, the fixation point is automatically identified us-
ing skin segmentation and facial feature detection, and foveated pro-
cessing is applied to generate a map of priority regions [4]. Relative
to the location of the face, a foveation model assigns macroblocks
to the priority regions, each region having a different quantization
parameter, allowing blocks nearest to the face to be coded with more

Proc. IEEE International Conference on Image Processing (ICIP), Sept. 2010



bits than blocks farther away. Rate control is performed by adjust-
ing the quantization parameter assigned to the face macroblocks (on
which all the other quantization parameters depend) on a frame-by-
frame basis.

ROI Encoders Two region-of-interest (ROI) encoding tech-
niques allocate bits primarily to the face and hands of the signer
[5]. Skin segmentation and face detection algorithms identify the
macroblocks containing the signer’s face and hands and provide a
segmentation map to the ROI encoder. Given the segmentation map,
different quantization parameters are selected for the macroblocks
belonging to the face, hands, or background. Rate control is per-
formed by adjusting the Lagrange multiplier on a frame-by-frame
basis, which controls the quantization parameter selection for each
region. These two ROI encoders are differentiated by the use of a
temporal smoothing of the macroblock segmentation labels. Specif-
ically, for the spatial-temporal ROI encoder, the face and hand
labels are held constant for a duration of 1 second, e.g., if a mac-
roblock is labeled as hand in frame 10, that macroblock will retain
the hand label until frame 25, at 15 frames per second. Thespatial
ROI encoder simply uses the segmentation map provided for the
current frame.

2.1. Verifying the necessity of z-scores

Analysis of variance (ANOVA) is used to identify statistically sig-
nificant effects on subjective intelligibility and a significant effect
was found for the preferred language (F (2, 206) = 28.87, p <

0.01). Participants who reported ASL as their preferred language
responded with statistically significantly higher intelligibility ratings
than both the group preferring English and the group preferring ei-
ther ASL or English. Higher fluency is unlikely, as the group report-
ing both ASL and English has roughly the same mean years of ex-
perience with ASL. It is more likely that the ASL group was biased
toward higher intelligibility ratings. This is a consequence of the
increased desire an ASL user likely has for a mobile phone that of-
fers video communication; making cell phone calls in their preferred
language is currently unavailable for only this group of participants.

This phenomenon is confirmed by applying ANOVA to the sub-
jective usability ratings. Similar to the results for intelligibility, the
participant’s preferred language is a significant effect and those pre-
ferring ASL responded significantly higher to the usability question,
emphasizing their increased desire for such a technology. In order to
eliminate this bias, the subjective intelligibility scores are converted
to z-scores, which has the desired consequence of removing infor-
mation about between subject differences [6]. In this experimental
database, the use of z-scores is justified by a thorough analysis of the
raw subjective ratings and z-scores necessarily remove a clear bias
in a portion of participants. The z-scored intelligibility ratings are
used for all further analysis.

2.2. Ranking encoders according to intelligibility

The ANOVA identifies a significant effect for the encoding algorithm
(F (3, 206) = 3.90, p < 0.01) and encoding bitrate (F (1, 206) =
31.46, p < 0.01). For the high bitrate videos, there is no statistical
difference in intelligibility between the x264, foveated, and spatial-
temporal ROI encoding algorithms. The mean intelligibility z-scores
for these encoders, presented in Table 1, correspond on average to
raw intelligibility scores between “easy to understand” and “very
easy to understand”. Both the x264 encoder and the foveated en-
coder yield statistically significantly higher intelligibility than the
spatial ROI encoder. The reduced performance of the spatial ROI

Table 1. Mean and standard deviation for z-scored intelligibility
ratings. Each average is computed over 32 individual ratings. A
rating of “very difficult to understand” maps to an average z-score
of -1.18 while a rating of “very easy to understand” maps to an av-
erage z-score of 1.13. In the high bitrate case, the x264, foveated,
and temporally smoothed ROI encoders have statistically equivalent
mean intelligibility scores. In the low bitrate case, the ASL-specific
encoders result in statistically significantly higher intelligibility than
the x264 encoder.

Bitrate Algorithm Mean SD

High

x264 0.66 0.84
Foveated 0.71 0.97

Spatial-Temporal ROI 0.30 0.82
Spatial ROI -0.07 0.92

Low

x264 -0.90 0.70
Foveated 0.01 0.80

Spatial-Temporal ROI -0.21 0.81
Spatial ROI -0.51 0.72

encoder is a consequence of compression distortion artifacts in the
signer’s face and hands due to ROI segmentation errors. The spatial-
temporal ROI encoder is less susceptible to segmentation errors be-
cause the region labels persist across time, eliminating any short du-
ration segmentation errors. For encoding algorithms that rely heavily
on region-based rate allocation, accurate segmentation is an impor-
tant factor in the final subjective intelligibility.

At low bitrates, all three of the ASL-specific encoding algo-
rithms provide statistically significant improvements over x264 in
mean intelligibility scores. The differences in intelligibility between
the three ASL-specific encoders are not statistically significant, each
having mean intelligibility z-scores corresponding to raw intelligi-
bility ratings between “neither easy nor difficult” and “easy to un-
derstand”. The mean intelligibility z-scores are provided in Table
1. The subjective experiment demonstrates that encoding algorithms
designed specifically for ASL can provide statistically significant
improvements in intelligibility over traditional, MSE-based encod-
ing algorithms and can generate intelligible ASL video at bitrates as
low as 30 kbps. More importantly, the experimental database affords
a detailed analysis of distortions that adequately challenge objective
estimators.

3. INFLUENCE OF SPACE AND TIME VARYING
DISTORTIONS ON OBJECTIVE ESTIMATOR

PERFORMANCE

While subjective testing is the most accurate method for evaluat-
ing distorted video, it is prohibitively costly. Objective estimators
are desirable and are evaluated in terms of their ability to predict
accurately subjective experimental data. The range of video con-
tent and distortion artifacts that occur in an experimental data set
can bias conclusions regarding the performance of an objective es-
timator. In the context of objective intelligibility estimators, it is
critical for the subjective test database to challenge the estimators
by selecting source videos that vary in brightness and contrast and
by applying distortions that vary non-uniformly both spatially, e.g.,
between the signer and the background, and temporally. This sec-
tion analyzes the performance of 4 objective estimators on different
subsets of the experimental data and demonstrates how the videos
and distortions present can bias the conclusions made regarding an
objective estimator.
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Table 2. Objective estimator performance comparison. PSNR per-
forms well for x264 coded videos at a single location, but fails to
predict intelligibility when the locations are combined. RMS distor-
tion contrast can predict intelligibility across the combined locations,
but only for the compression artifacts. The objective intelligibility
measure (OIM) offers improvements over both PSNR and RMS dis-
tortion contrast for videos containing spatially varying distortions.
For the outdoor videos containing temporally varying distortions, the
spatiotemporal OIM outperforms the spatial only OIM.

Source Videos Measure Data Set RMSE R

x264 Coded

PSNR
Indoor 0.96 0.899

Outdoor 0.46 0.980
Combined 2.18 0.094

RMS Indoor 1.01 0.886
Distortion Outdoor 0.98 0.908

Spatially Contrast Combined 1.46 0.743
Uniform OIM Indoor 1.01 0.886

Distortions Spatial Outdoor 0.68 0.956
Only Combined 1.14 0.853

OIM
Indoor 0.98 0.894

Outdoor 0.63 0.964
Combined 1.06 0.875

ASL Coded

PSNR
Indoor 1.54 0.090

Outdoor 1.15 0.638
Combined 1.49 0.056

RMS Indoor 1.53 0.141
Distortion Outdoor 1.09 0.688

Spatially Contrast Combined 1.47 0.190
Varying OIM Indoor 1.34 0.499

Distortions Spatial Outdoor 1.24 0.563
Only Combined 1.29 0.509

OIM
Indoor 1.36 0.480

Outdoor 0.93 0.785
Combined 1.23 0.569

Four objective estimators are considered for predicting intelligi-
bility: PSNR, RMS distortion contrast, and an objective intelligibil-
ity measure (OIM), with and without appropriate temporal pooling
[7]. For a video sequence, both PSNR and RMS distortion contrast
are computed in each individual video frame and averaged across
all frames. The OIM applies a region-based spatial pooling mech-
anism that allows for varying importance to be placed on the ROIs
contained in sign language video and a temporal pooling mechanism
that accounts for the temporal variations in distortions. The spatial
only OIM includes only the region-based pooling mechanism.

The performance of an objective estimator is computed in terms
of its prediction accuracy and linearity. For a given estimator, a lin-
ear fit is applied to map the objective estimate to the subjective rat-
ings. Prediction linearity is measured using Pearson’s linear corre-
lation,R, and prediction accuracy is measured using the root mean
squared error (RMSE) of the prediction residuals, after applying the
linear fit. For this analysis, the experimental data is divided into two
sets: the videos encoded using x264 and the videos encoded using
the ASL-specific encoders. Within each of these 2 subsets, the pre-
diction accuracy and linearity is computed for 3 additional subsets:
the indoor and outdoor videos separately and the indoor and outdoor
videos combined, resulting in 6 total data subsets. For all of the ob-
jective estimators evaluated, there is at least one experimental data
set for which the estimator can accurately predict intelligibility.

PSNR performs well on uniform video content. When con-

sidering only the x264 coded set and separating the indoor and out-
door videos, PSNR provides an accurate estimate of subjective in-
telligibility, having low RMSE (0.96 and 0.46 for indoor and out-
door videos) and high linear correlation (0.899 and 0.980 for indoor
and outdoor videos) similar to both RMS distortion contrast and the
OIM, as illustrated by Table 2. One way in which energy-based er-
ror measures, such as PSNR, fail as objective estimators is with test
videos containing varying brightness, because brighter videos yield
higher MSE values at perceptually similar levels of distortion. Com-
bining the indoor and outdoor videos into a single data set reveals
the inability of PSNR to compare distortions across videos of vary-
ing contrast. The RMSE increases to 2.18 and the linear correlation
decreases toR = 0.094, demonstrating that PSNR is virtually un-
correlated with the subjective intelligibility ratings when combining
both indoor and outdoor video sets. Because it computes errors in
contrast and not raw pixel values, RMS distortion contrast performs
significantly better than PSNR on the combined data set, having an
RMSE of1.46 and correlation ofR = 0.743.

RMS distortion contrast performs well for spatially and tem-
porally uniform distortions. RMS distortion contrast provides an
accurate estimate of subjective intelligibility for videos without spa-
tially varying distortions, but fails to estimate intelligibility for ASL
coded videos, as illustrated by Table 2. The OIM is the most accurate
of the 3 objective estimators on the ASL coded set, having an RMSE
of 1.23 and linear correlation ofR = 0.569. The low correlation
is primarily due to the difficulty in estimating intelligibility for the
indoor videos. When comparing the ASL coded indoor and outdoor
videos separately, the OIM performs well on the outdoor set, having
RMSE equal to0.93 and linear correlation ofR = 0.785.

When the test data set includes only distortion artifacts resulting
from compression, RMS distortion contrast and the OIM perform
similarly and one could incorrectly conclude that applying knowl-
edge of the ROI provides no benefit to an objective estimator. This
behavior can be explained by the relationship between the global dis-
tortion and the region distortions. For simplicity in computation and
discussion, MSE is used as the distortion measure in this compar-
ison. For two sample videos (one indoor, one outdoor), the global
MSE and the MSE in the face and hand regions are computed sep-
arately in each video frame, providing 3 vectors of per-frame MSEs
having length equal to the number of frames. The correlation be-
tween the global MSE and each of the region MSEs is computed and
presented in Table 3.

For videos coded using x264, which contain only compression
artifacts, the global MSE is highly correlated with each of the region
MSEs, havingRFace = 0.875, RHand = 0.837 for indoor videos
andRFace = 0.775, RHand = 0.711 for outdoor videos. Because
of this, measuring distortion globally serves as an accurate predictor
of the local distortions, which explains the high performance of RMS
distortion contrast on just x264 coded videos. As a result of the high
correlation, simply computing the global mean of the distortions
can serve as a surrogate for perceptually valid region-based pooling.
Knowing that an observer is extracting information from specific re-
gions (e.g. face and hands) provides little improvement in predic-
tion if the video is encoded without any region of interest approach.
For videos encoded using the ASL-specific techniques, the distor-
tions are very localized and global distortions are not correlated with
the region distortions, havingRFace = 0.028, RHand = −0.157
for indoor videos andRFace = −0.154, RHand = 0.004 for out-
door videos, coded using the spatial-temporal ROI encoder. In these
ROI coded video cases, RMS distortion contrast fails to accurately
estimate intelligibility. Objective estimators that incorporate region-
based pooling, such as the OIM, are required to differentiate between
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Table 3. Comparison of spatial and temporal variations in distor-
tions. Correlation between global MSE and MSE in face and hand
regions is given byRFace andRHand, respectively. When consid-
ering only compression artifacts, such as those resulting from x264,
the global MSE is highly correlated with distortion in the ROI. When
the distortions vary spatially, global MSE and the ROI distortions
are uncorrelated and a global distortion measure is unable to predict
accurately the distortion in the ROI.TV measures the temporal vari-
ation of the distortions. Temporal distortions are relatively uniform
for the indoor videos but vary substantially for the outdoor videos
coded using the ROI encoders.

Location Encoding Algorithm RFace RHand TV

Indoor

x264 0.875 0.837 3.5
Foveated 0.261 0.714 5.0

Spatial-Temporal ROI 0.028 -0.157 9.7
Spatial ROI 0.069 -0.066 12.3

Outdoor

x264 0.775 0.711 9.0
Foveated 0.166 -0.001 8.4

Spatial-Temporal ROI -0.154 0.004 233.1
Spatial ROI -0.096 0.042 268.2

distortions in the background and in the signer.
OIM performs well for spatially and temporally varying dis-

tortions. When the average distortion in a single frame is highly
correlated with local distortions, the spatial pooling mechanism has
little impact on the performance of a particular objective estimator.
Similarly for temporal pooling, advanced pooling mechanisms are
unlikely to improve the objective estimate when the distortions do
not vary across frames. The temporal variation of the distortions in
a sequence can be quantified by a measure based on between frame
difference in distortions [8]. Videos in which the amount of distor-
tion varies significantly between frames will yield a high measure of
temporal variation. The outdoor video sequences coded using either
of the ROI encoders have the largest measured temporal variation,
having average temporal variation ofTV = 250.65, while the in-
door video sequences and the x264 coded sequences have very low
temporal variation, having average temporal variation of7.98, as
summarized in Table 3.

When the temporal variation is low, as is the case with the x264
coded videos, advanced temporal pooling provides negligible im-
provement over a simple global average in terms of the prediction
accuracy. In this case, the spatial only OIM performs similarly to the
full spatiotemporal OIM, as illustrated in Table 2. However, when
comparing the ASL coded outdoor data subset, which has the high-
est temporal variation, the spatial OIM, having RMSE of 1.24 and
R = 0.563, performs significantly worse than the spatiotemporal
OIM, having RMSE of 0.93 andR = 0.785.

4. CONCLUSION

Depending on the presence of varying video content and the homo-
geneity of the spatial and temporal distortions, several possible con-
clusions regarding the performance of objective intelligibility esti-
mators can be incorrectly reached. Four objective estimators were
evaluated in terms of their subjective intelligibility prediction accu-
racy. For each of the tested estimators, there exists a subset of videos
on which the estimator can accurately predict subjective intelligibil-
ity. If the distortions present in a test set do not contain spatially
or temporally localized errors, objective estimators that incorporate
an ROI pooling mechanism cannot reliably improve the estimation

accuracy, even in cases such as ASL video, when an ROI is unequiv-
ocally known to exist. This highlights the importance of both design-
ing a diverse experimental data set and verifying that a proposed ob-
jective estimator is adequately challenged by the experimental data
set on which it is tested.

In future work, the methodology of analyzing a subjective exper-
imental database will be extended to other image and video quality
databases. In the domain of quality assessment, many techniques
have been proposed for improving objective quality estimators by
incorporating visual attention data [9, 10]. Typically this is done by
applying a spatially-varying weight to the errors prior to spatial pool-
ing, wherein the weights are proportional to the relative importance
of each region or pixel. Care must be taken to ensure that the dis-
tortions present in the subjective database effectively challenge the
objective estimators. As demonstrated by this work, compression
artifacts alone are insufficient for evaluating region-based pooling
mechanisms.
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